
1

A Signal Processing Architecture based on
Evolving Digital Logic Gates

Jim Torresen
Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway

E-mail: jimtoer@ifi.uio.no

Abstract— Evolvable Hardware (EHW) is a new
method for designing electronic circuits. In this paper,
the scheme is applied for the design of a novel digital
signal processing architecture. It is based on incremen-
tal evolution of digital logic circuits. That is, to improve
evolvability, subcircuits are initially evolved. The archi-
tecture is applied as a prosthetic hand controller. By
applying the proposed method, the best performance
achieved is substantially better than that obtained by
an artificial neural network.

1 Introduction

There exist a set of signal classification tasks where
there is a need for adaptation. To make this possible,
automatic schemes for adaptation of electronic circuits
would have to be developed. One such technique –
inspired by natural evolution, is called evolvable hard-
ware (EHW). Instead of manually designing a circuit,
only input/output-relations are specified. The circuit
is automatically designed using an adaptive algorithm
like Genetic Algorithms (GA). The proposed signal
classification architecture is a general one. However,
to show how well it performs, this paper contains the
results from classifying human signals for prosthetic
hand control.

To enhance the lives of people who have lost a hand,
prosthetic hands have existed for a long time. These
are operated by the signals generated by contracting
muscles – named electromyography (EMG) signals, in
the remaining part of the arm [1]. By using EHW it is
possible to make the controller itself adapt to each dis-
abled person. The controller is constructed as a signal
classification hardware which maps input patterns to
desired actions of the prosthetic hand. Adaptable con-
trollers have been proposed based on neural networks
[2]. These require a floating point CPU or a neural
network chip. EHW based controllers, on the other
hand, use a few layers of digital logic gates for the pro-
cessing. Thus, a more compact implementation can be
provided making it more feasible to be installed inside
a prosthetic hand.

One of the main problems in evolving hardware sys-
tems seems to be the limitation in the chromosome
string length [3], [4]. A long string is normally required
for solving a complex problem. However, a larger num-
ber of generations is required by the evolutionary al-
gorithm as the string increases. This often makes the
search space becoming too large. Thus, work has been
undertaken to try to diminish this limitation. One
promising approach, incremental evolution of EHW
was first introduced in [5] for a character recognition

system. The approach is a divide-and-conquer on the
evolution of the EHW system, and thus, named in-
creased complexity evolution. It consists of a division
of the problem domain together with incremental evo-
lution of the hardware system. Evolution is first under-
taken individually on a set of basic units. The evolved
units are the building blocks used in further evolution
of a larger and more complex system. The benefits
of applying this scheme is both a simpler and smaller
search space compared to conducting evolution in one
single run. The goal is to develop a scheme that could
evolve systems for complex real-world applications.

In this paper, it is applied to evolve a signal classifi-
cation architecture applied to prosthetic hand control.
An EHW architecture as well as how incremental evo-
lution is applied are described. The goal of the design
is to provide an architecture with a high generalization
performance. This is to make it a strong alternative to
methods like artificial neural networks.

The next two sections introduce the concepts of the
architecture. Then, results are given in section 4 with
conclusions in section 5.

2 Prosthetic Hand Control

The research on adaptable controllers presented in
this paper is based on designing a controller provid-
ing six different motions in three different degrees of
freedom: Open and Close hand, Extension and Flec-
tion of wrist, Pronation and Supination of wrist. Such
a complex controller could probably only be designed
by adapting the controller to each dedicated user. The
data set consists of the same motions as used in earlier
work [6], and it is collected by Dr. Kajitani at Elec-
trotechnical Laboratory in Japan. Some of the initial
results using this data set can be found in [7].

The absolute value of the EMG signal is integrated
for 1 s and the resulting value is coded by four bits. To
improve the performance of the controller it is benefi-
cial to be using several channels. In these experiments
four channels were used in total, giving an input vector
of 4 x 4 = 16 bits.

The output vector consists of one binary output for
each hand motion, and therefore, the output vector
is coded by six bits. For each vector only one bit is
“1”. Thus, the data set is collected from a disabled
person by considering one motion at a time. For each
of the six possible motions, a total of 50 data vectors
are collected, resulting in a total of: 6 x 50 = 300
vectors. Further, two such sets were made, one to be

2

used for evolution (training) and the others to be used
as a separate test set for evaluating the best circuit
after evolution is finished.

3 An Architecture for Incremental Evolution

In this section, the proposed classifier architecture is
described. This includes the algorithm for undertaking
the incremental evolution.

�������
���
	�
� � � �� ��

� ��
� � �
�� ��

����������
�!�"
$#

�������
���
	�
� � � �� ��

� ��
� � �
�� ��

�&%�('*) � + �-,�	 � �
$" � � .�

/10/&2 3

4 5 687 �� ��
� ��

����
�!�"
$#
9;: .$+ !�"
$#
'*) � + �<>=��
�+ � .�

'*) � + �$? : @ � � .�

'*) � + �A) .�
" � � .�

'*) � + �B,$	 � �
$" � � .�

Fig. 1. The Digital Gate Based Architecture of the Prosthetic
Hand Controller

The architecture is illustrated in Fig. 1. It consists
of one subsystem for each of the six prosthetic mo-
tions. In each subsystem, the binary inputs x0 . . . x15

are processed by a number of different units, starting
by the AND-OR unit. This is a layer of AND gates
followed by a layer of OR gates. Each gate has three
inputs. The outputs of the OR gates are routed to the
Selector. This unit selects which of these outputs that
are to be counted by the succeeding counter. That is,
for each new input, the Counter is counting the num-
ber of selected outputs being “1” from the correspond-
ing AND-OR unit. Finally, the Max Detector outputs
which counter – corresponding to one specific motion,
is having the largest value. Each output from the Max
Detector is connected to the corresponding motor in
the prosthesis. If the Counter having the largest value
corresponds to the correct hand motion, the input has
been correctly classified. One of the motivations for
introducing the selectors is to be able to adjust the
number of outputs from each AND-OR unit in a flex-
ible way. A scheme, based on using multi-input AND
gates together with counters, has been proposed ear-
lier [8]. However, the architecture used in this paper
is distinguished by including OR-gates, together with
the selector units involving incremental evolution. The
incremental evolution of this system can be described
by the following steps:
1. Step 1 evolution. Evolve the AND-OR unit for
each subsystem separately one at a time. Apply all
vectors in the training set for the evolution of each
subsystem. There are no interaction among the sub-
systems at this step, and the fitness is measured on the
output of the AND-OR units.
2. Step 2 evolution. Assemble the six AND-OR
units into one system as seen in Fig. 1. The AND-
OR units are now fixed and the Selectors are to be
evolved in the assembled system – in one common run.
The fitness is measured using the same training set as

in step 1 but the evaluation is now on the output of
the Max Detector.
3. The system is now ready to be applied in the pros-
thesis.

In the first step, subsystems are evolved separately,
while in the second step these are evolved together.
The motivation for evolving separate subsystems – in-
stead of a single system in one operation, is that ear-
lier work has shown that the evolution time can be
substantially reduced by this approach [5], [9].

The layers of AND and OR gates in one AND-OR
unit consist of 32 gates each. This number has been
selected to give a chromosome string of about 1000
bits which has been shown earlier to be appropriate.
A larger number would have been beneficial for ex-
pressing more complex Boolean functions. However,
the search space for evolution could easily become too
large. For the step 1 evolution, each gate’s inputs are
determined by evolution.

As described in the previous section, the EMG signal
input consists of 16 bits. Inverted versions of these
are made available on the inputs as well, making up a
total of 32 input lines to the gate array. The evolution
is based on gate level building blocks. However, since
several output bits are used to represent one motion,
the signal resolution becomes increased from the two
binary levels.

For the step 2 evolution, each line in each selector
is represented by one bit in the chromosome. This
makes a chromosome of 32 x 6 bits= 192 bits. If a bit
is “0”, the corresponding line should not be input to
the counter, whereas if the bit “1”, the line should be
input.

Fitness Measure

In step 1 evolution, the fitness is measured on all the
32 outputs of each AND-OR unit. As an alternative
experiment, we would like to measure the fitness on
a limited number (16 is here used as an example) of
the outputs. That is, each AND-OR unit still has 32
outputs but – as seen in Fig. 2, only 16 are included in
the computation of the fitness function:

Fitness =

16∑

i=1

Output OR gate i (1)

The 16 outputs not used are included in the chromo-
some and have random values. That is, their values do
not affect the fitness of the circuit. After evolution, all
32 outputs are applied for computing the performance:

Performance =

32∑

i=1

Output OR gate i (2)

Since 16 OR gates are used for fitness computation,
the “fitness measure” equals 16. In the figure, gate
1 to 16 are used for the fitness function. However, in
principle any 16 gates out of the 32 can be used. Other
numbers than 16 were tested in experiments but 16

3

Performance computation
 after step 1 evolution

1

16

17

32

Fitness computation
 in step 1 evolution

1

16

17

32

Chromosome Chromosome

Fig. 2. A “Fitness Measure” Equal to 16

showed to give the best performance results and was
used in the following reported experiments.

This could be an interesting approach to improve the
generalisation of the circuit. Only the OR gates in the
AND-OR unit are “floating” during the evolution since
all AND gates may be inputs to the 16 OR gates used
by the fitness function. The 16 “floating” OR-gates
then provide additional combination of these trained
AND gates.

Motion
 1 Motion

 2

Motion
 3

Motion
 1 Motion

 2

Motion
 3

a) b)
Fig. 3. Illustration of Noise Added to a) A Plain Signal and b)
A Pre-Processed Signal

Another way to look at this is that the “floating”
gates provide “noise”. However, the noise is not added
to the plain input but to a preprocessed and improved
signal (output from the AND gates) as illustrated in
Fig. 3. The inner circle for each motion indicates the
training set domain, with the outer circle indicating
the added generalisation obtained by adding “noise”.

In a) the signal is not pre-processed and adding noise
makes the interference among classes worse while in b)
it improves the generalisation rather than introducing
interference. The step 2 evolution will be evolving the
ratio of noise in the final system by adjusting the num-
ber of selector bits set for gates 1 to 16 compared to
for gates 17 to 32.

Fitness Function

The fitness function is important for the perfor-
mance when evolving circuits. For the step 1 evolu-
tion, the fitness function – applied for each AND-OR
unit separately, is as follows for the motion m (m ∈
[0, 5]) unit:

F1(m) =
1

s

50m−1∑

j=0

O∑

i=1

x+

50m+49∑

j=50m

O∑

i=1

x+
1

s

P−1∑

j=50m+50

O∑

i=1

x

where x =

{
0 if yi,j 6= dm,j
1 if yi,j = dm,j

where yi,j in the computed output of OR gate i and
dm,j is the corresponding target value of the training
vector j. P is the total number of vectors in the train-
ing set (P = 300). As mentioned earlier, each subsys-
tem is trained for one motion (the middle expression
of F1). This includes outputting “0” for input vectors
for other motions (the first and last expressions of F1).

The s is a scaling factor to implicitly emphasize on
the vectors for the motion the given subsystem is as-
signed to detect. An appropriate value (s = 4) was
found after some initial experiments. The O is the
number of outputs included in the fitness function and
is either 16 or 32 in the following experiments (referred
to as “fitness measure” in the previous section).

The fitness function for the step 2 evolution is ap-
plied on the complete system and is given as follows:

F2 =

P−1∑

j=0

x where

x =

{
1 if dm,j = 1 and m = i for which max5

i=0(Ctri)
0 else

This fitness function counts the number of training
vectors for which the target output being “1” equals
the id of the counter having the maximum output (as
mentioned earlier only one output bit is “1” for each
training vector).

The Evolutionary Algorithm

The simple Genetic Algorithm (GA) – given by
Goldberg [10], was applied for the evolution with a
population size of 50. For each new generation an
entirely new population of individuals is generated.
Elitism is used, thus, the best individuals from each
generation are carried over to the next generation. The
(single point) crossover rate is 0.8, thus the cloning rate
is 0.2. Roulette wheel selection scheme is applied. The
mutation rate – the probability of bit inversion for each
bit in the binary chromosome string, is 0.01.

Various experiments were undertaken to find ap-
propriate GA parameters. The ones that seemed to
give the best results were selected and fixed for all the
experiments. This was necessary due to the large num-
ber of experiments that would have been required if GA
parameters should be able vary through all the exper-
iments. The preliminary experiments indicated that
the parameter setting was not a major critical issue.

The proposed architecture fits into most FPGAs.
The evolution is undertaken off-line using software sim-
ulation. However, since no feed-back connections are
used and the number of gates between the input and
output is limited, the real performance should equal
the simulation. Any spikes could be removed using
registers in the circuit.

For each experiment presented, four different runs
of GA were performed. Thus, each of the four result-
ing circuits from step 1 evolution is taken to step 2
evolution and evolved for four runs.

4

Motion Selector 1-16 Selector 17-32 # 1’s
0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 18
1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 19
2 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 14
3 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 18
4 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1 19
5 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 20

TABLE I

The selector settings of the best performing circuit.

4 Results

This section reports the experiments undertaken to
search for an optimal configuration of the prosthetic
hand controller.

The circuit evolved with the best test set perfor-
mance obtained 67% correct classification (the max-
imum training set performance was 76.3%.). The cir-
cuit had a 60.7% test set performance after step 1
evolution (evaluated with all 32 outputs of the sub-
systems). The step 2 evolution provided a substantial
increase up to 67%. Other circuits didn’t perform that
well, but the important issue is that it has been shown
that the proposed architecture provides the potential
for achieving high degree of generalization.

A feed-forward neural network was trained and
tested with the same data sets. The network consisted
of (two weight layers with) 16 inputs, 40 hidden units
and 6 outputs. In the best case, a test set performance
of 58.8% correct classification was obtained. The train-
ing set performance was 88%. Thus, a higher training
set performance but a lower test set performance than
for the best EHW circuit. This shows that the EHW
architecture holds good generalisation properties.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

Motion #

P
er

fo
rm

an
ce

 in
 %

Step 1 evolution

Step 2 evolution

Fig. 4. The test set performance for each motion for the best
circuit evolved.

In Fig. 4, the performance of each motion of the best
circuit is compared for step 1 and step 2 evolution, re-
spectively. For some motions the performance after
step 1 evolution is higher than that achieved after step
2 evolution. However, after step 2 evolution the perfor-
mance of the worst performing motions are improved.
The latter would be most important to provide the
best usability of the prosthesis.

Table I shows the selector settings of the best per-
forming circuit. It is interesting to observe that in

average about half of the selector lines are connected
(“1”) while the other half is not – see the righthand col-
umn. For each of the motions the number of selectors
connected varies from 14 to 20.

5 Conclusions

In this paper, an EHW architecture for signal classi-
fication has been introduced. The best circuit evolved
shows a much better performance than what was ob-
tained by artificial neural networks. The results illus-
trate that this is a promising approach for evolving
systems for signal classification applications.

References

[1] R.N. Scott and P.A. Parker, “Myoelectric prostheses: State
of the art,” Journal of Medical Engineering and Technol-
ogy, vol. 12, no. 4, pp. 143–151, July-August 1988.

[2] S. Fuji, “Development of prosthetic hand using adaptable
control method for human characteristics,” in Proc. of Fifth
International Conference on Intelligent Autonomous Sys-
tems, 1998, pp. 360–367.

[3] W-P. Lee, J. Hallam, and H.H. Lund, “Learning complex
robot behaviours by evolutionary computing with task de-
composition,” in Learning Robots: Proc. of 6th European
Workshop, EWLR-6 Brighton, A. Birk and J. Demiris,
Eds., vol. 1545 of Lecture Notes in Artificial Intelligence,
pp. 155–172. Springer-Verlag, 1997.

[4] X. Yao and T. Higuchi, “Promises and challenges of evolv-
able hardware,” in Evolvable Systems: From Biology to
Hardware. First International Conference, ICES 96, T.
Higuchi et al., Eds., vol. 1259 of Lecture Notes in Com-
puter Science, pp. 55–78. Springer-Verlag, 1997.

[5] J. Torresen, “A divide-and-conquer approach to evolvable
hardware.,” in Evolvable Systems: From Biology to Hard-
ware. Second International Conference, ICES 98, M. Sip-
per et al., Eds., vol. 1478 of Lecture Notes in Computer
Science, pp. 57–65. Springer-Verlag, 1998.

[6] I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata, and
T. Higuchi, “An evolvable hardware chip and its appli-
cation as a multi-function prosthetic hand controller,” in
Proc. of 16th National Conference on Artificial Intelligence
(AAAI-99), 1999, pp. 182–187.

[7] J. Torresen, “Two-step incremental evolution of a digital
logic gate based prosthetic hand controller.,” in Evolvable
Systems: From Biology to Hardware. Fourth International
Conference, (ICES’01), vol. 2210 of Lecture Notes in Com-
puter Science, pp. 1–13. Springer-Verlag, 2001.

[8] M. Yasunaga, T. Nakamura, I. Yoshihara, and J.H. Kim,
“Genetic algorithm-based design methodology for pattern
recognition hardware,” in Evolvable Systems: From Biology
to Hardware. Third International Conference, ICES 2000,
J. Miller et al., Eds. 2000, vol. 1801 of Lecture Notes in
Computer Science, pp. 264–273, Springer-Verlag.

[9] J. Torresen, “Scalable evolvable hardware applied to road
image recognition.,” in Proc. of the 2nd NASA/DoD Work-
shop on Evolvable Hardware, J. Lohn et al., Ed. July 2000,
pp. 245–252, IEEE Computer Society, Silicon Valley, USA.

[10] D. Goldberg, Genetic Algorithms in search, optimization,
and machine learning, Addison–Wesley, 1989.

